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A B S T R A C T

Bridge cables, as one of the critical load-bearing elements in cable-stayed bridges, are prone to hidden internal 
defects that are difficult to detect. In conventional magnetic flux leakage (MFL) testing, the magnetic field decays 
rapidly with depth, which hinders defect localization. To overcome this limitation, this study proposes a defect 
localization method based on multi-component MFL signals. Based on the magnetic dipole model (MDM) of a 
single broken wire, the spatial-domain summation preprocessing in the circumferential direction is proposed to 
enhance weak responses. For axial localization, cross-validation of the summed differential axial component and 
the radial component improves robustness. In addition, an asymmetric peak–valley full width at half-maximum 
(APV-FWHM) feature is introduced for depth localization, which reduces amplitude dependence and decouples 
depth localization from circumferential positioning. In order to validate the method, an experimental platform 
for bridge cable based on MFL testing was established. Experimental validation on a PECS7–127 cable suc
cessfully detected all broken-wire defects at depths of up to 42 mm with a 95% confidence interval of 
97.9–100%. The axial localization results from different components indicated strong consistency, reaching 
94.9% accuracy within a ± 5 mm tolerance. In addition, circumferential defect regions were effectively iden
tified, and radial localization achieved 97.7% accuracy when a tolerance of ±1 layer was permitted. These 
findings provide preliminary validation of the feasibility and reliability of the proposed method for testing and 
localizing a single broken wire defect in bridge cables using multi-component MFL signals.

1. Introduction

Bridge cables, serving as one of the critical load-bearing elements in 
cable-stayed bridges, suspension bridges, and tied-arch bridges, are 
subjected during service to the coupled effects of traffic loads, wind 
loads, and aggressive environmental conditions [1,2]. Under such cir
cumstances, defects such as corrosion and broken wires could occur 
inside the cable, while their hidden nature renders conventional visual 
detection ineffective for timely identification. If such defects continue to 
propagate, the service life may be significantly shortened [3], and in 
severe cases, its safe operation could be compromised.

Magnetic flux leakage (MFL) testing, as a widely adopted non- 
destructive testing (NDT) technique, has been extensively applied in 
steel wire ropes, pipelines, and rails [4]. Given its suitability for 
detecting internal defects in ferromagnetic materials and its proven 
practicality and deployability in engineering applications, MFL is also 
well suited for the testing of bridge cables.

Bridge cables, however, differ markedly from conventional wire 
ropes. They exhibit larger diameters and are covered by a polyethylene 
(PE) sheath that introduces significant lift-off distance. The lift-off dis
tance leads to significant attenuation and spatial smoothing of the 
external magnetic field. As a result, the acquired signal is dominated by 
its axial component, and it was traditionally assumed that the radial and 
circumferential components carry little value for identifying defects 
[5,6]. As a representative of this view, Christen investigated cross- 
sectional localization of defects in stay cables by modeling each defect 
as an equivalent magnetic dipole and fitting this analytical expression to 
the axial pickup coil signals acquired on the cable surface [5]. This 
approach represented an exploratory attempt to infer defect positions 
from single-component data. Subsequently, Ben employed a three- 
dimensional finite element model of a broken-wire defect and 
revealed the distribution of the axial and circumferential components, 
without experimental validation [7]. These results suggest that, even 
under significant lift-off distance and predominantly axial 
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magnetization, radial and circumferential components may still retain 
discriminative information.

Despite these indications, current practical testing for bridge cables 
mainly provides preliminary axial defect location rather than triaxial 
localization [8]. In particular, identifying the circumferential position of 
a defect and determining whether it is located near the surface or in a 
deeper layer remain challenging [9]. Such localization information is 
essential for targeted repair and window-opening verification during 
maintenance, and serves as the link between defect detection and sub
sequent safety assessment [10].

Achieving reliable three-dimensional localization of defects gener
ally requires sufficient and complementary information from multi- 
component signals, rather than relying on a single dominant compo
nent. This requirement can be addressed in two ways. One is enriching 
vector information through multi-component acquisition, another is 
enriching spatial information through multi-channel sampling. Subse
quently, signal processing is applied to extract localization information 
in the axial, circumferential, and depth directions.

From the perspective of multi-component acquisition, multi- 
component sensing has gained increasing application in recent years 
[11–13]. For small-diameter wire ropes, Chen employed a 30-channel 
array to acquire axial, radial, and circumferential MFL signals, indi
cating that multi-component fields provide complementary information 
that improves the detectability for broken wires [14]. For pipelines, 
Chen proposed a cascaded detection and sizing framework, in which 
triaxial MFL samples collected by a 240-channel detection robot were 
integrated with deep learning and physics-informed models, yielding 
substantial gains in defect identification and sizing accuracy [15]. In the 
railway field, Gong conducted vehicle-borne multi-component MFL 
testing with triaxial Hall-sensor arrays and reported that varying array 
configurations extract richer feature descriptors of rail-head cracks [16]. 
The above studies indicate that multi-component acquisition is an 
effective means of increasing information diversity for defect charac
terization and localization. However, in the specific domain of bridge 
cable testing, such multi-component experimental research remains 
unexplored.

From the perspective of multi-channel sampling, multi-channel 
sampling enhances spatial coverage and redundancy, which is particu
larly beneficial for weak defect responses. On the practical side, Sun 
developed a circumferential multi-channel detection system employing 
a simulated uniaxial Hall-sensor array with multiplexing techniques 
[8,17]. This configuration expanded information coverage, under
scoring the need for multi-channel acquisition and multi-component 
analysis to improve defect separability in bridge cables. Evidence from 
other MFL domains further supports the effectiveness of multi-channel 
acquisition and analysis for enhancing defect separability. Xue investi
gated wire ropes with a circumferential inductive coil array and using an 
adaptive pipeline of differencing, empirical mode decomposition 
(EMD), wavelet denoising, and correlation-guided fusion, achieved a 
significantly higher signal-to-noise ratio (SNR) than single-channel sig
nals [18]. Liu proposed a scheme for pipelines in which multi-channel 
Hall signals were fused within a three-dimensional dipole-inversion 
framework, yielding more efficient depth quantification and reducing 
estimation errors to below 10% [19]. These studies point to a consistent 
trend that multi-channel sampling can provide a practical information 
basis under weak response conditions.

In summary, these studies indicate that multi-component and multi- 
channel MFL testing can improve the detectability of weak defects. 
Nevertheless, the effective use of triaxial information for practical 
triaxial localization in bridge cable testing remains insufficiently vali
dated. This issue still requires a validated, physically interpretable 
signal-processing workflow tailored to bridge cable testing. To establish 
a controlled basis, this study begins with a single broken-wire defect 
under a controlled lift-off condition. A single broken wire provides a 
more stringent detectability test, as its response amplitude is lower than 
that of multiple-break cases.

Based on the above analysis, this study proposes a defect-localization 
method for bridge cables based on multi-component MFL signals. First, 
circumferential spatial-domain summation is performed on differential 
components to improve SNR of deep defects. Second, a workflow of the 
method is then developed. The axial position is cross-validated by the 
summed differential axial signal and radial signal, the circumferential 
region is identified from the peak of the differential axial component, 
and the defect depth is estimated using an asymmetric peak–valley full 
width at half-maximum (APV-FWHM) feature that reduces amplitude 
dependence and decouples depth estimation from circumferential 
positioning. Finally, an experimental platform was established and 
applied to a bridge cable specimen to validate the proposed method. The 
remainder of the paper is organized as follows: Section 2 introduces the 
magnetic dipole model (MDM) and the multi-component localization 
workflow; Section 3 describes the experimental setup and specimen; 
Section 4 presents the experimental results and discussion; and Section 5
concludes the paper and outlines future work.

2. Method

2.1. MDM of a single broken wire

The principle of MFL testing for bridge cables is shown in Fig. 1. A 
permanent magnet is employed to magnetize the cable. When a defect is 
present inside the cable, local permeability decreases and magnetic 
reluctance increases, causing a portion of the magnetic flux to leak from 
the steel into the surrounding air. In the absence of an internal defect, 
the magnetic flux primarily closes along the cable path and returns 
through the yoke. By placing magnetic sensors on the cable surface, the 
leakage field induced by defects can be acquired. The amplitude, 
waveform, and spatial distribution of the signals provide information for 
determining the location of the defect.

Considering a single broken-wire defect located within the bridge 
cable, all steel wires are assumed to be magnetically saturated by the 
permanent magnet during the MFL testing process [20,21]. In the 
model, inter-wire interactions are neglected, and the leakage field 
generated by the broken wire is assumed not to be significantly altered 
by the surrounding intact wires. Reference [4] reported that in the two- 
dimensional case, a broken wire with a width of 2w can be modeled by 
assuming magnetic charges of ±Q on both sides of the defect, as shown 
in Fig. 2. One positive charge +Q is located at x = − w, and another 
negative charge − Q is located at x = + w.

Fig. 1. Principle of MFL testing for bridge cables.

Fig. 2. MDM of a single broken-wire defect in a bridge cable.
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The leakage magnetic field produced by a magnetic dipole pair is 
expressed in components at an in-plane point (x, y) (as) 
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In related studies, the inter-layer differential sensors were employed 
to acquire the MFL signals [22,23]. This configuration enhances the 
leakage field response by differentiating signals from two vertically 
offset positions, expressed as: 

ΔBx(x, y,w,Q,Δd) = Bx(x, y,w,Q) − Bx(x, y+Δd,w,Q) (3) 

To facilitate comparison of waveform characteristics, the normalized 
typical MFL signals of a single broken wire are shown in Fig. 3 along the 
scan direction. Both Bx and ΔBx reach their peak values at the defect 
center, whereas By becomes zero at this position, showing an antisym
metric distribution on both sides of the defect.

2.2. Multi-component signals of MFL testing

A cylindrical coordinate system (r, θ, z) is defined on the bridge 
cable, as shown in Fig. 4. The sensors are circumferentially arranged, 
and the z-axis corresponds to the scan direction discussed in Section 2.1.

The parameter w corresponds to half of the broken-wire defect width, 
with the defect center defined at z = 0. On the cross-sectional projection 
plane, y is defined as the projection of the sensor–defect line, consistent 
with the definition of y in Section 2.1. The parameter R is the radius of 
the outer circumscribed circle of the parallel wires and is treated as a 
constant. The lift-off distance l includes the PE sheath thickness and the 
sensor–sheath gap. For a single scan, l can be assumed constant. The 
variable h represents the depth direction from the cable surface toward 
its center, and Δd denotes the distance between sensor layers.

For a circumferential angle θ with − π ≤ θ ≤ π, the resulting dis
tances y1 and y2 are given by eqs. (4) and (5), respectively. 
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The axial component of the magnetic field on the cross section, 
aligned with the scan direction, is modeled as: 

Bz(z, y;w,Q) =
μ0Q
4π
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The radial inter-layer differential signal is defined by differentiating 
Bz at y1 and y2: 

ΔBz(θ, z;R, h, l,Δd,w,Q) = Bz(z, y1;w,Q) − Bz(z, y2;w,Q) (7) 

In the cross-sectional projection plane as shown in Fig. 5, the angle δ 
is defined as the angle between the sensor–defect line and the radial 
direction r. The magnetic flux density components Br and Bθ represent 
the radial and circumferential directions respectively, where Bθ is 
orthogonal to Br.

The component By is given by: 

By(θ, z;R, h, l,w,Q) =
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4π
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The circumferential and radial components are then obtained by: 

Bθ(θ, z;R, h, l,w,Q) = sinδ • By(θ, z;R, h, l,w,Q) (9) 

Br(θ, z;R, h, l,w,Q) = cosδ • By(θ, z;R, h, l,w,Q) (10) 

The geometric relationships for δ are defined as: 

sinδ =
(R − h)sinθ

y1
(11) 

cosδ =
(R + l)2

+ y2
1 − (R − h)2

2(R + l)y1
(12) 

In the practical MFL testing, the acquired signal Bacquire detected by 
the sensor can be expressed as: 

Bacquire = Bbackground +Bwire (13) 

where Bbackground denotes the background field generated by the 
magnetizer, and Bwire represents the magnetic field induced by the 
defect.

Along the axial direction, differential processing between two sensor 
positions effectively suppresses the background field [8], so that the 

Fig. 3. Normalized typical MFL signal shapes of a single broken wire.

Fig. 4. MDM for a single broken-wire defect in bridge cable.

Fig. 5. Cross-sectional projection plane.
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acquired differential signal can be approximated as the differential 
component of Bwire,z: 

ΔBacq,z ≈ ΔBwire,z (14) 

In theory, the background magnetization field in the circumferential 
and radial components of the MFL signals is much smaller and can be 
neglected. These responses are most pronounced in the innermost sensor 
layer, which is selected for subsequent analysis. These signals can be 
approximated by the corresponding component as: 

Bacq,r ≈ Bwire,r (15) 

Bacq,θ ≈ Bwire,θ (16) 

All subsequent analyses in this study are based on the above ap
proximations. As shown in Fig. 6, the typical signals of a single broken 
wire in the bridge cable indicate distinct characteristics at different 
depths. The columns represent increasing depth from left to right, and 
the rows correspond to ΔBz, Br and Bθ.

2.3. Broken wire localization method

In the practical testing, the sensor array consists of a finite number M 
of circumferential channels, as shown in Fig. 7. These channels provide a 
spatial sampling of the circumferential MFL signals.

The workflow of the proposed broken wire localization method is 
summarized in Fig. 8. It shows the preprocessing of multi-component 
signals through circumferential spatial-domain summation, followed 
by axial, circumferential, and radial localization methods.

2.3.1. Circumferential spatial-domain summation preprocessing
Given that the sensors are circumferentially arranged on the same 

cross section, the observation of the n-th channel at position z can be 
expressed as: 

xn(z) = sn(z)+ ηn(z) (17) 

where sn(z) is the axial response induced by the defect, and ηn(z) is zero- 
mean noise that is independent across channels with approximately 
equal variance.

Since the signal adds coherently while the noise adds incoherently 
across independent channels, the output SNR can be expressed as: 

SNRsum = M⋅SNRsingle (18) 

In decibels, this relationship can be written as: 

Fig. 6. Typical signals from a single broken wire at different depths in the bridge cable.

Fig. 7. Probe array with a finite number of M circumferential channels.

Fig. 8. Flowchart of the proposed broken wire localization method.
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SNRdB,sum = SNRdB,single + 10log10M (19) 

Therefore, circumferential summation in the spatial domain en
hances the SNR of deep-defect responses by 10log10M dB. When the 
defect is offset from the cable center, the number of effectively 
contributing channels decreases. Nevertheless, the SNR of summed 
signals remains markedly higher than that of a single channel as long as 
a subset of channels contribute effectively.

2.3.2. Signal cross-validation for axial localization
To enhance the reliability of defect testing, the signal cross- 

validation for axial localization is employed. As shown in Fig. 9 (a), 
the curves correspond to different defect depths (0 ≤ h ≤ R). The 
circumferential summation of ΔBz reaches its peak at the defect location 
for all depths, providing a reliable indicator for axial localization. For 
deeper defects, the amplitude of the summed signal is more pronounced 
than the single-channel response due to the contribution of circumfer
ential summation. Similarly, Fig. 9 (b) shows that the circumferential 
summation of Br always crosses zero at the defect location for different 
defect depths (0 ≤ h ≤ R). In practice, the defect position can be accu
rately determined by identifying the midpoint between the adjacent 
peak and valley of the summed radial response, thereby enabling signal 
cross-validation of the axial location. Meanwhile, the summation of Bθ 

indicated a centrosymmetric feature along the circumferential direction 
and remained consistently zero.

2.3.3. Circumferential localization
On the circular cross section at the defect center, the defect was 

located by analyzing the differential axial component. As shown in 
Fig. 10, the curves correspond to different defect depths (0 ≤ h ≤ R). 
The ΔBz signal reached its maximum at the defect location, providing a 
reliable basis for circumferential localization. In addition, the signal 
amplitude decreases symmetrically on both sides of the peak, reflecting 
the local response induced by the broken wire. The sharpness and 
magnitude of the peak depend on defect depth.

2.3.4. Radial localization
Assuming a fixed width w, the depth localization in reference [8] 

relied on the amplitude directly above the defect at the sensor of 

interest, so that circumferential localization had to be achieved first 
because the defect location is generally unknown prior to testing. In 
other words, the radial and circumferential localization criteria are 
coupled. In Section 2.3.2, the spatial distribution of the MFL signals 
shows that increasing defect depth causes the axial profile of the broken- 
wire response to become progressively broader. To quantify this depth- 
related broadening, this study extends the classical full width at half 
maximum (FWHM) concept to the asymmetric peak–valley waveform 
and adopts the asymmetric peak–valley full width at half-maximum 
(APV-FWHM) as the depth feature [24]. APV-FWHM is defined as the 
axial distance between the midpoints of the left and right peak–valley 
pairs, as shown in Fig. 11.

Along the scan direction, the peak of the defect response is denoted 
as 

(
zpeak,Vpeak

)
, and the nearest valleys on the left and right are 

(
zvalleyL,VvalleyL

)
and 

(
zvalleyR,VvalleyR

)
, respectively. The corresponding 

midpoints of the left and right peak–valley pairs are then given by eqs. 
(20) and (21): 

VmL =
1
2
Vpeak +

1
2
VvalleyL (20) 

VmR =
1
2
Vpeak +

1
2
VvalleyR (21) 

The intersections of the signal curve with these midpoint values are 
denoted as (zL,VmL) and (zR,VmR). The APV-FWHM can be defined as: 

FAPV− FWHM = zR − zL (22) 

3. Experimental setup

3.1. Experimental platform

In order to validate the proposed method, an experimental platform 
for bridge cable based on MFL testing was established, as shown in 
Fig. 12. The platform mainly consists of a magnetizer, a sensor array, 
and a control box.

The magnetizer employs an optimized permanent-magnet configu
ration assembled using N52 neodymium–iron–boron (NdFeB) magnets, 
ensuring saturation magnetization of the steel wires in bridge cables 

Fig. 9. Typical circumferentially summed MFL signals of a single broken-wire defect at different depth: (a) Summation of differential axial component; (b) Sum
mation of radial component.

Fig. 10. Circumferential localization of defect analyzed using ΔBz signal at 
different depth.

Fig. 11. Representation of the APV-FWHM.
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during detection [25]. The sensor array is circumferentially arranged 
around the cable surface and divided into modular units, each equipped 
with Inter-Integrated Circuit (I2C) bus interfaces. The control box is 
powered by a lithium battery direct current (DC) supply, while a 
brushless DC motor drives the magnetizer assembly along the cable 
specimen at a controlled scanning speed. An encoder wheel mounted on 
the cable surface provides displacement feedback for data sampling. All 
signals are collected by an acquisition module based on a field- 
programmable gate array (FPGA), which performs synchronous sam
pling and parallel data aggregation. The host computer communicates 
wirelessly with the controller to transmit motion commands and receive 
signals in real time.

In this study, the TMAG5273 triaxial digital Hall sensor (Texas In
struments) was employed. It provides a linear range of ±266 mT and an 
I2C interface with runtime address reconfiguration, enabling multi- 
channel arrays and efficient bus management. Relative to analog Hall 
sensors, the digital-output architecture enables higher integration and 
simplifies array design and data acquisition. As shown in Fig. 13, an 

example of a circuit board designed for a PECS7–127 cable is presented 
(127 steel wires of 7 mm diameter) [26]. A single circuit board had 80 
triaxial Hall sensors. During testing, three circuit boards were deployed 
as a sensor array that surrounds the cable, providing 240 sensors ar
ranged in four layers with an inter-layer distance of 4 mm. Within each 
sensor layer, 60 sensors are uniformly distributed circumferentially with 
an angular pitch of 6◦.

3.2. Experimental cable specimen

The experimental cable specimen was 2800 mm in length, as shown 
in Fig. 14. It had an outer diameter of 109 mm and consisted of 127 
parallel steel wires with a diameter of 7 mm [26]. Seven artificial 
broken-wire defects, each with a width of 10 mm, were introduced in
side the specimen. All defects were placed at the same circumferential 
angle and were spaced 200 mm apart axially. The defect layer index was 
defined from #1 to #7, corresponding to the near-surface to deeper 
layers.

The selection of an artificial broken-wire width of 10 mm has 
practical engineering justification. Bridge cables in service are typi
cally subjected to axial tensile stress σ. When an internal steel wire 
fractures due to corrosion or fatigue, the released elastic strain causes 
end retraction. After frictional load transfer τ is re-established with 
adjacent wires, a single broken-wire defect in bridge cable is formed, as 
shown in Fig. 15.

For high-strength galvanized steel wires, the elastic modulus is 
Es ≈ 200 GPa, and the ultimate tensile strength of a 7 mm wire is f =
1670 MPa − 1960 MPa [26]. Considering service stress levels of 0.45f −
0.55f [27], the applied stress range is given in (23): 

Fig. 12. Experimental platform for bridge cable using MFL testing.

Fig. 13. Circuit board designed for a PECS7–127 cable.

Fig. 14. Experimental cable specimen and layout of internal broken- 
wire defects.

Fig. 15. Idealized stress and shear-transfer distribution of a single broken-wire 
defect in bridge cable.
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σ = (0.45 − 0.55)f = 751.5 MPa − 1078 MPa (23) 

The corresponding strain is expressed in (24): 

ε = σ/Es = 0.38% − 0.54% (24) 

After fracture, the wire enters a friction-dominated transfer zone 
from the broken end, within which the axial force increases approxi
mately linearly with distance until recovering to the far-field stress σ 
[28]. If the recovery length on one side is taken as Lrec = 2 m [29,30], the 
equivalent linear recovery length is given by (25): 

Leq = Lrec
/
2 (25) 

The single-side retraction is then (26): 

w0 = εLeq = 3.8 mm − 5.4 mm (26) 

The total width of a single broken wire, obtained by superimposing 
both sides, is given by (27): 

wtotal = 2w0 = 7.6 mm − 10.8 mm (27) 

From a service-life perspective, a single-wire fracture can be regar
ded as an initial defect. Such a break redistributes axial force to adjacent 
wires, producing local stress concentration [31]. With continued ser
vice, these effects may lead to widening of the fracture zone and an 
increased number of broken wires. Although the long-term evolution 

Fig. 16. Circumferential component Bθ signals for defect axial localization.

Fig. 17. Radial component signals for defect axial localization: (a) Signals Br of the innermost sensor layer; (b) Circumferentially summed signal 
∑

Br of the 
innermost sensor layer.
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warrants further investigation, the 10 mm artificial fracture adopted in 
this study provides a rational and conservative representation of the 
early stage of damage in bridge cables.

4. Results and discussion

Guided by the defect localization method using multi-component 
MFL signals in Section 2.3, the following subsections report the results 
of bridge-cable testing and discuss the localization performance.

4.1. Spatial-domain signal preprocessing

During the experimental testing, the sensor array scanned the cable 
specimen, and the multi-component signals were collected on an equally 
spaced grid along the scan direction with a spatial sampling resolution of 
0.50 mm. One representative dataset was selected for detailed analysis. 
The circumferential and radial components in the innermost sensor layer 
were selected for subsequent analysis.

As shown in Fig. 16, the circumferential component Bθ indicated that 
the defect features were discernible in near-surface layers but became 
indistinct in the deeper layers. Therefore, the Bθ signals were not 
considered a primary factor in the subsequent analysis.

Fig. 17 (a) shows the radial component Br near the defects. Multiple 

Fig. 18. Differential axial component after baseline removal and S-G filtering.

Fig. 19. Normalized comparison of differential axial component signal 
amplitudes.

Fig. 20. Axial component differential signals for defect axial localization: (a) Differential signals ΔBz; (b) Circumferentially summed signal 
∑

(ΔBz).
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channels indicated clear responses at all seven defect positions. To 
improve the SNR, all signals were circumferentially summed to 

∑
Br, as 

shown in Fig. 17 (b). Based on the characteristics of the signal at the 
defect position, the midpoint between the nearest peak and valley was 
taken as the defect axial position.

The differential axial component between sensor layer 1 and layer 4, 
referred to as the original signal, was defined by: 

ΔBorigin
z = Bz,Layer 1 − Bz,Layer 4 (28) 

To improve the quality of the original signal, a polynomial baseline 
fitting was first applied to remove the underlying baseline trend. This 
differential signal still exhibited noise spikes that impeded accurate 
axial localization of defects. To suppress noise while preserving signal 
characteristics, a Savitzky–Golay (S-G) filter with a window length of 81 
and an order of 2 was applied, as shown in Fig. 18.

Seven peaks of the ΔBz show a one-to-one correspondence with the 
seven defect locations. For comparison, the present results were 
normalized by the maximum peak value and were compared with the 
data reported in reference [8]. As shown in Fig. 19, the correlation co
efficient r = 0.9943 indicated excellent agreement.

The defect peaks in the differential signals were clearly character
ized, as shown in Fig. 20 (a). However, single-channel responses 
remained vulnerable to noise and spurious local peaks, particularly for 
deeper defects where the signal amplitude was weaker. To improve 

localization accuracy and robustness, all differential axial components 
were circumferentially summed, denoted as 

∑
(ΔBz), to enhance the 

SNR of axial localization, as shown in Fig. 20 (b).

4.2. Signal cross-validation for axial localization

This section shows the signal cross-validated results for axial local
ization using circumferentially summed signals 

∑
Br and 

∑
(ΔBz). The 

peak of 
∑

(ΔBz) indicates the defect position. Because 
∑

Br reverses sign 
across the defect, the midpoint between the nearest peak and valley 
provides an independent axial estimate. Agreement between the two 
estimates confirms the position and reduces false responses from noise, 
drift, and vibration.

However, peak-based localization was easily confounded by spurious 
local maxima, which weakened separability when used alone. Accord
ingly, seven defects were scanned 25 times to yield 175 positive re
sponses, while non-defect local peaks from each scan were collected as 
negatives. The parameter Az was defined as the local maximum of 
∑

(ΔBz), and |Ar| was defined as the absolute value of local maxima and 
minima of 

∑
Br. In addition, for each scan, the amplitudes of local 

abnormal fluctuations of Az and |Ar| in non-defect regions were extrac
ted to form a non-defect dataset, representing the noise and environ
mental interference under the most unfavorable conditions.

As shown in Fig. 21, the axial response Az exhibited a clear 

Fig. 21. Local peak amplitudes for defect and non-defect cases of Axial 
response Az.

Fig. 22. Radial response |Ar |: (a) Local peak amplitudes for defect and non-defect cases; (b) ROC curve of local radial component |Ar | (peaks)

Fig. 23. Histogram of absolute errors between axial localization results from 
∑

(ΔBz) and 
∑

Br , along with KDE curve.
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separation between defect and non-defect cases: for the deepest #7 
defect, the amplitude remained above 3.56 mT, while the amplitudes of 
non-defect spurious peaks remained below 1.09 mT. With any threshold 
selected within this interval (1.09–3.56 mT), all defects in this dataset 
were successfully detected (175 out of 175) at depths up to 42 mm, 
corresponding to a 95% Clopper–Pearson confidence interval (CI) of 
97.9–100%.

As shown in Fig. 22 (a), the radial response |Ar| for deep defects 
approached the level of non-defect spurious peaks, so the threshold 
cannot be determined directly. Instead, the receiver-operating- 
characteristic (ROC) curve was used to optimize the threshold 
[32,33]. As shown in Fig. 22 (b), the ROC curve was constructed using 
defect and non-defect datasets of |Ar|, and the area under the curve 
(AUC) reached 0.985, indicating discriminative capability between 
defect and non-defect cases. For practical classification, the Youden 
Index identifies the point on the ROC curve farthest from the chance 
diagonal, thereby maximizing the balance between sensitivity and 
specificity [34]. The resulting optimal threshold of |Ar| was 3.858 mT, at 
which the true positive rate (TPR) reached 0.98, ensuring reliable defect 
detection while minimizing false alarms. As both threshold selection and 
evaluation were performed on the same dataset, these results should be 
regarded as exploratory; independent datasets will be required in future 
work to verify the generalizability of the chosen threshold.

A comparison of axial localization results obtained from 
∑

(ΔBz) and 
∑

Br over 25 experimental sets is presented in Fig. 23. The results 
indicate a correlation coefficient of 0.999986, with a mean absolute 
error (MAE) of 1.67 mm and a root-mean-square error (RMSE) of 2.44 
mm. The kernel density estimation (KDE) curve provided a smoothed 
visualization of the error distribution, indicating that most localization 

errors are concentrated within 2 mm [35]. Within tolerance ranges of ±
2 mm and ± 5 mm, the localization accuracies reach 75.4% and 94.9%, 
respectively. The strong agreement between the two components con
firms their mutual consistency and enhances the reliability of the overall 
axial localization performance.

4.3. Circumferential and radial localization results

With axial localization established, defect localization was further 
investigated along the circumferential and radial axes. As shown in 
Fig. 24, each circumferential profile of the processed ΔBz signal corre
sponded to one site along the horizontal axis, sampled at an axial defect 
location. Across 25 datasets with 7 peaks per scan, the horizontal axis 
therefore included 175 profiles (25 × 7) ordered by defect number 
within each dataset. The vertical axis listed all circumferential channels, 
each representing the processed ΔBz values extracted at the corre
sponding axial peak positions. The bright regions indicated the 
circumferential areas associated with the defects, consistent with the 
peak-based circumferential localization method.

For radial localization, a multiclass ROC analysis based on the APV- 
FWHM feature was conducted on 25 experimental sets to evaluate the 
feasibility of depth discrimination. Specifically, the One-vs-Rest (OvR) 
strategy was employed, where each defect layer was sequentially 
regarded as the positive class and the remaining layers were merged as 
the negative class. The ROC curves of individual layers were shown in 
Fig. 25 (a). The macro-averaged AUC reached 0.921, indicating 
balanced discriminative performance across layers, while the micro- 
averaged AUC was 0.945, indicating strong overall separability. These 
results confirmed that the APV-FWHM feature offers strong statistical 
separability across different defect depths.

On this basis, the maximum a posteriori (MAP) decision rule was 
employed for multiclass discrimination [36]. Let the APV-FWHM feature 
of sample i be denoted as Fi. For the Gaussian statistical model corre
sponding to the j-th defect layer, the discrimination score is defined as: 

Si,j = logp
(
Fimj, sj

)
+ logαj (29) 

Here, mj and sj denote the mean and standard deviation of layer j, 
and αj represents the prior probability. The predicted defect layer index 
of sample i is then determined by: 

ℓ̂i = arg max
j∈{1,…,7}

Si,j (30) 

that is, the defect layer with the maximum posterior score is selected as 
the final prediction. This guarantees unique classification of each sample 
and enables statistical evaluation of performance using a confusion 
matrix. The confusion matrix in Fig. 25 (b) shows that the strict layer 

Fig. 24. Heatmaps of circumferential ΔBz profiles at axial defect locations.

Fig. 25. Multiclass analysis of the APV-FWHM feature: (a) ROC curves of individual defect layers using the OvR strategy, showing strong separability across depths; 
(b) Confusion matrix of defect layer classification results obtained by the MAP decision rule.
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classification accuracy was 71.4%. Allowing a tolerance of ±1 layer 
increased the accuracy to 97.7%.

For practical implementation, a standard set of APV-FWHM param
eters can be established through pre-deployment calibration on a 
reference cable with certified defects.

5. Conclusion

This study proposes a defect localization method for bridge cables 
based on multi-component MFL testing, which employs spatial-domain 
summation preprocessing in the circumferential direction to enhance 
weak responses. The signal cross-validation is used for axial localization, 
and the APV-FWHM feature is adopted for depth localization, while 
peak-based circumferential localization is used to identify defect 
regions.

To validate the feasibility of this method, an experimental platform 
with triaxial Hall-sensor array was established, enabling synchronous 
acquisition of multi-component MFL signals. Experimental validation on 
a PECS7–127 cable indicated that all broken wires were successfully 
detected (175/175, 95% CI: 97.9–100%) at depths up to 42 mm. The 
signal cross-validation for axial localization accuracy reached 94.9% 
within a ± 5 mm tolerance. The circumferential regions of defects were 
effectively identified. The ROC analysis indicated that the APV-FWHM 
feature provides strong statistical separability across defect depths, 
while achieving a layer-wise depth estimation accuracy of 97.7% within 
a ± 1-layer tolerance. These results offer preliminary validation of the 
proposed method and indicate its effectiveness for defect testing and 
localization in bridge cables.

However, the present study was limited to the case of a single broken 
wire in bridge cables. Future research should aim to extend the meth
odology to encompass more complex defect scenarios, multi-wire de
fects and partial breaks, and enhance its engineering applicability.
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